skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Xu, Yanchao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Lipoxygenase (LOX) is associated with responses to plant hormones, environmental stresses, and signaling substances. Methyl jasmonate (MeJA) treatment triggers the production of LOX, polyphenol oxidase, and protease inhibitors in various plants, producing resistance to herbivory. To examine the response of MtLOX24 to MeJA, the phenotypic and physiological changes in Medicago truncatula MtLOX24 overexpression and lox mutant plants were investigated. Additionally, wild-type R108, the MtLOX24-overexpressing line L4, and the mutant lox-1 were utilized as experimental materials to characterize the differentially expressed genes (DEGs) and metabolic pathways in response to MeJA. The results indicate that after treatment with 200 µM of MeJA, the damage in the mutants lox-1 and lox-2 was more serious than in the overexpressing lines L4 and L6, with more significant leaf wilting, yellowing, and oxidative damage in lox-1 and lox-2. Exogenous application of MeJA induced H2O2 production and POD activity but reduced CAT activity in the lox mutants. Transcriptome analysis revealed 10,238 DEGs in six libraries of normal-growing groups (cR108, cL4, and clox1) and MeJA-treated groups (R108, L4, and lox1). GO and KEGG functional enrichment analysis demonstrated that under normal growth conditions, the DEGs between the cL4 vs. cR108 and the clox-1 vs. cR108 groups were primarily enriched in signaling pathways such as plant–pathogen interactions, flavonoid biosynthesis, plant hormone signal transduction, the MAPK signaling pathway, and glutathione metabolism. The DEGs of the R108 vs. cR108 and L4 vs. cL4 groups after MeJA treatment were mainly enriched in glutathione metabolism, phenylpropanoid biosynthesis, the MAPK signaling pathway, circadian rhythm, and α-linolenic acid metabolism. Among them, under normal growth conditions, genes like PTI5, PR1, HSPs, PALs, CAD, CCoAOMT, and CYPs showed significant differences between L4 and the wild type, suggesting that the expression of these genes is impacted by MtLOX24 overexpression. CDPKs, CaMCMLs, IFS, JAZ, and other genes were also significantly different between L4 and the wild type upon MeJA treatment, suggesting that they might be important genes involved in JA signaling. This study provides a reference for the study of the response mechanism of MtLOX24 under MeJA signaling. 
    more » « less
  2. Allotetraploid cotton (Gossypium) species represents a model system for the study of plant polyploidy, molecular evolution, and domestication. Here, chromosome-scale genome sequences were obtained and assembled for two recently described wild species of tetraploid cotton,Gossypium ekmanianum[(AD)6,Ge] andGossypium stephensii[(AD)7,Gs], and one early form of domesticatedGossypium hirsutum, racepunctatum[(AD)1,Ghp]. Based on phylogenomic analysis, we provide a dated whole-genome level perspective for the evolution of the tetraploidGossypiumclade and resolved the evolutionary relationships ofGs,Ge, and domesticatedG. hirsutum. We describe genomic structural variation that arose duringGossypiumevolution and describe its correlates—including phenotypic differentiation, genetic isolation, and genetic convergence—that contributed to cotton biodiversity and cotton domestication. Presence/absence variation is prominent in causing cotton genomic structural variations. A presence/absence variation-derived gene encoding a phosphopeptide-binding protein is implicated in increasing fiber length during cotton domestication. The relatively unimprovedGhpoffers the potential for gene discovery related to adaptation to environmental challenges. Expanded gene families enoyl-CoA δ isomerase 3 and RAP2-7 may have contributed to abiotic stress tolerance, possibly by targeting plant hormone-associated biochemical pathways. Our results generate a genomic context for a better understanding of cotton evolution and for agriculture. 
    more » « less